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ABSTRACT

The present study was designed to update the knowledge about hypoxia-related multi-omic molecular
landscape in hepatocellular carcinoma (HCC) tissues. Large-size HCC datasets from multiple centers were
collected. The hypoxia exposure of tumor tissue from patients in 10 HCC cohorts was estimated using a
novel HCC-specific hypoxia score system constructed in our previous study. A comprehensive
bioinformatical analysis was conducted to compare hypoxia-associated multi-omic molecular features in
patients with a high hypoxia score to a low hypoxia score. We found that patients with different exposure
to hypoxia differed significantly in transcriptomic, genomic, epigenomic, and proteomic alterations,
including differences in mRNA, microRNA (miR), and long non-coding RNA (IncRNA) expression, differences
in copy number alterations (CNAs), differences in DNA methylation levels, differences in RNA alternative
splicing events, and differences in protein levels. HCC survival- associated molecular events were identified.
The potential correlation between molecular features related to hypoxia has also been explored, and
various networks have been constructed. We revealed a particularly comprehensive hypoxia-related
molecular landscape in tumor tissues that provided novel evidence and perspectives to explain the role of
hypoxia in HCC. Clinically, the data obtained from the present study may enable the development of
individualized treatment or management strategies for HCC patients with different levels of hypoxia
exposure.

INTRODUCTION genetic instability, drug resistance, and angiogenesis

[1, 2]. Hypoxia exposure of HCC tissues is related to the
Hypoxia is a common microenvironmental feature of poor prognosis of patients [3]. Tumor tissue hypoxia
solid tumors including hepatocellular carcinoma (HCC). caused by treatments such as transhepatic arterial
It leads to HCC cell proliferation activation, apoptosis chemotherapy and embolization may aggravate the
inhibition, metabolic reorganization, immune escape, malignant phenotype of HCC cells and impede the
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therapeutic effect [4, 5]. Before formulating treatment
measures for hypoxia, revealing the molecular
mechanism is necessary. Studies have revealed
the molecular mechanism by which hypoxia plays a role
in tumors [6]. However, most of this evidence was
obtained from in vitro cell studies and animal models,
while little was obtained from the tissues of HCC
patients because it is not convenient to evaluate the
hypoxia exposure of the tissues of the patients [7]. The
molecular landscape present in hypoxia-exposed HCC
tissues still lacks a comprehensive description. In order
to benefit patients, especially for the development of
precision medicine and individualized medicine, a large
amount of tissue-level evidence is urgently needed.
Bhandari reported on molecular landmarks of tumor
hypoxia across 19 cancer types [8]. Based on TCGA
data, Ye et al revealed hypoxia-associated molecular
features to aid hypoxia-targeted therapy [9]. These
studies mentioned some data about HCC, but the
signature they used to assess the degree of HCC tissue
hypoxia was not HCC specific, and the description of the
molecular feature caused by hypoxia in HCC was not
comprehensive enough. In our previous works, a novel
HCC-specific hypoxia signature containing 21 stable
hypoxia-related genes was constructed using mRNA
expression data. Based on the 21-gene signature, we
grouped patients from 10 HCC cohorts into high
hypoxia exposure and low hypoxia exposure groups.
Next, we comprehensively compared changes in
hypoxia-related molecular features in two groups from
genomic, epigenomic, transcriptomic, and proteomic
perspectives to deduce the hypoxia induced molecular
landscape. We believe that the molecular landscapes
revealed in the present study will provide useful
information for developing therapy strategies of HCC.

RESULTS

Transcriptomic alterations in HCC patients with
different hypoxia scores

In the previous studies, we established a hypoxia score
system based on a novel HCC-specific 21-gene hypoxia
signature that could be used to effectively estimate the
hypoxia exposure in HCC tissues. In the 10 GEO
datasets and the TCGA dataset, hypoxia scores of each
tumor tissue samples were calculated. Patients were
significantly grouped as high hypoxia exposure group
and low hypoxia exposure group according to the
hypoxia score (Supplementary Figure 1). First, we
analyzed the differences in mMRNA expression between
HCC patients with high hypoxia scores (greater than the
upper quartile) and those with low hypoxia scores (less
than the lower quartile) cross the 11 HCC datasets. Here,
mRNA with log.FC > 0.58 or log.FC <-0.58 and
adjusted P < 0.05 were defined as differentially

expressed mRNA (DE-mRNA). In these cohorts, the
proportion of DE-mRNA in the total MRNA measured
was positively correlated with the interquartile range
(IQR) of the liver cancer tissue hypoxia scores in this
cohort (Figure 1A), suggesting that the difference in
MRNASs was to some extent caused by the difference in
hypoxia scores. We counted the frequency of each
mRNA identified as a DE-mRNA in all cohorts and
included DE-mRNAs with a frequency equal to or
greater than 5 in the high frequency/DE-mRNA
(HF/DE-mRNA) list. The mRNA changes in this list
were relatively consistent among the 10 cohorts. A total
of 371 mRNAs were selected, including 192 upregulated
DE-mRNAs and 179 down-regulated DE-mRNAs. For a
complete HF/DE-mRNA list, see Additional File 1:
Supplementary Table 2. Based on the clinical data from
the TCGA-LIHC and GSE14520 datasets, we performed
survival analysis on 371 HF/DE-mRNAs (logrank test,
cut-off = median expression level of candidate mMRNA).
Through Venny analysis, we integrated the survival data
from the TCGA-LIHC and GSE14520 datasets and
obtained 129 HF/DE-mRNAs related to HCC survival
(logrank Prcea-Linc & logrank Pgsgias20 < 0.05), which
included 59 risk factors (HRTCGA-LIHC & HRgE14520 > 1)
and 70 protective factors (HRtcea-Linc & HRge14520 <1).
There were 51 HF/DE-mRNAs that met the logrank P <
0.01 and HR < 0.7 or > 1.3 requirements in both of
TCGA-LIHC and GSE14520 (Figure 1B). The results of
the HF/DE-mRNA survival analysis (logrank test) are
shown in Additional File 1: Supplementary Table 3.

Hypoxia-inducible factor 1-alpha (HIF-1A) plays a core
role in hypoxia. 2450 potential transcription targets
genes of the HIF1A transcription factor predicted using
the known transcription factor binding site motifs from
the TRANSFAC Predicted Transcription Factor Targets
database. 10%-15% of the upregulated DE-mRNAS in
each cohort may be potential transcription targets of
HIF-1A (Figure 1C). Among these potential HIF-1A
transcription targets, DE-mRNAs with a frequency
higher than 5 among ten cohorts are shown in Figure
1D; most are risk factors for survival. Besides, although
HIF-1A protein levels are known to be regulated after
translation under hypoxic conditions, 10 HCC datasets
indicated that the mMRNA level of HIF-1A significantly
increased in the high hypoxia score group and showed a
significantly positive correlation with the hypoxia score
(Figure 1E, 1F).

To further reveal the functions of HF/DE-mRNAs, the
enrichments of biological processes and pathways
involving HF/DE-mRNA were analyzed using data from
different sources, such as Gene Ontology (GO)
biological processes, Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways, Reactome Gene Sets,
and Canonical Pathways (Figure 2A). In addition to the
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Figure 1. The mRNA alterations in hepatocellular carcinoma (HCC) patients with high hypoxia scores and low hypoxia scores.
(A) Hypoxia scores were calculated based on the 21-gene hypoxia signature. According to the upper quartile and the lower quartile, patients
were divided into a high hypoxia score group and a low hypoxia score group. In the 11 HCC cohorts, the percentage of differentially
expressed (DE)-mRNAs among all mMRNAs measured was positively proportional to the interquartile range (IQR) of the hypoxia scores. (B) A
total of 51 high frequency/DE-mRNAs (HF/DE-mRNAs) are correlated to HCC patient survival in both TCGA-LIHC and GSE14520. The heat map
shows the difference in the expression of these mRNAs between the high hypoxia score group and the low hypoxia score group in the 10 HCC
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cohorts, that is, the log2 (fold change) between the two groups. The forest plot indicates the hazard ratios (HRs) of these mRNAs for OS in the
survival analysis (all logrank P < 0.01, HR < 0.7 or > 1.3, cut-off value = median expression level). (C) The percentage of transcription targets
with differentially expressed hypoxia-inducible factor 1-alpha (HIF-1A) in a dataset for all DE-mRNAs in the dataset. (D) Thirty-six mMRNAs may
function as transcription targets of HIF-1A, and the upregulation trends are consistent in the 10 HCC datasets. The heat map shows the
difference in the expression of these mRNAs between the high hypoxia score group and the low hypoxia score group. The forest plot
indicates the HRs of these mRNAs for OS in the survival analysis (cut-off = median expression level). (E) The differences in HIF-1A mRNA
expression levels between the high hypoxia score group and the low hypoxia score group in 10 HCC datasets. (F) Correlations between HIF-1A

mRNA expression levels and hypoxia scores for the 10 HCC datasets.

response to hypoxia, HF/DE-mRNAs are mainly
involved in biological processes related to metabolism,
including glucose metabolism, lipid metabolism, and
amino acid metabolism. As expected, pathway
enrichment analysis results for data from multiple
sources all showed significant enrichment of the HIF-1
pathway and glucose metabolism pathways; other
enriched pathways were mainly related to various
metabolic pathways. Besides, some classical tumor-
related pathways, such as the PI3K-AKT signaling
pathway and activated protein kinase (AMPK) signaling
pathway, were also significantly enriched (Additional
File 1: Supplementary Table 4). The pathways related to
the regulation of the extracellular matrix were also
associated with HF/DE-mRNAs. Therefore, we
hypothesized that hypoxia exposure might affect the
extracellular matrix, which determines tumor invasion
and metastasis. To find the connection between terms in
the enrichment analysis of biological processes and
pathways, we clustered the terms and constructed a
network (Figure 2B). The name of each cluster was the
name of the most representative term, and the node size
was the number of genes in the term. The names of all
nodes can be found in Additional File 2. For the HF/DE-
MRNA translation products, protein-protein interaction
(PPI) enrichment analysis was carried out with the
following databases: BioGrid6, InWeb IM7, and
OmniPath8. We constructed a PPI enrichment network
of physical interactions using molecular complex
detection (MCODE) (Figure 2C). The names of all
nodes are listed in Additional File 3. The annotation of
each MCODE is shown in Additional File 1:
Supplementary Table 5. In addition to focusing on
HF/DE-mRNAs, we used gene set enrichment analysis
(GSEA) to reveal differences between hallmark gene
sets between the high hypoxia score group and the low
hypoxia score group based on all mMRNA differences
between the two groups (Figure 2D). The hypoxia gene
set was upregulated in all cohorts with high hypoxia
scores. The genes composing the glycolysis gene set was
upregulated in the high hypoxia score groups of 9
cohorts. Other upregulated gene sets with high
consistency in the 10 cohorts included the P53 pathway,
PI3K/AKT/mammalian target of rapamycin (mTOR)
signaling, TNFA signaling via NFKB, unfolded protein
response, TGF-beta signaling, and MTORC1 signaling.
Although the fatty acid metabolism pathway was

downregulated in the high hypoxia score groups in the
TCGA-LIHC and GSE14520 cohorts, downregulation
was not consistent among the other pathways. After
applying a bimodality filter and weighted gene
correlation network-based clustering, Hoadley's team
identified 22 nonredundant gene programs related to the
biological behaviors of tumors [10]. We found 15 gene
programs that were significantly different between the
high hypoxia score group and the low hypoxia score
group (Figure 2E), and the single-sample GSEA z-scores
for some cancer-promoting gene programs increased in
patients with high hypoxia scores.

We used TCGA-LIHC data to analyze the differences in
microRNAs (miRs) in HCC tissues with high hypoxia
scores and low hypoxia scores. The miRs with log,FC >
0.58 or logFC < -0.58 and adjusted P < 0.05 were
defined as differentially expressed miRs (DE-miRs). We
found a total of 63 DE-miRs, including 39 upregulated
DE-miRs and 24 downregulated DE-miRs. Survival
analysis showed that some DE-miRs were related to the
OS rate (logrank test, cut-off = median expression level)
of HCC patients (Figure 3A and Additional File 1:
Supplementary Table 6). In our study, miR-210-3p had
the smallest adjusted P value among the upregulated
DE-miRs (logoFC = 2.41). Survival analysis using the
median expression level as the cut-off showed that miR-
210-3p had the largest HR (logrank P < 0.05) and that
high miR-210-3p expression indicated a poor prognosis.
Additionally, the passenger strand of miR-210 (miR-
210-5p) was significantly upregulated in HCC tissues
with high hypoxia scores, and high miR-210-5p
expression also indicated a poor prognosis. Among the
downregulated DE-miRs, miR-139-5p had the smallest
adjusted P value (logoFC = -0.68). The response of miR-
139-5p to hypoxia has not been reported. We found that
low miR-139-5p expression indicates poor outcomes of
HCC patients. Next, we predicted target mRNAs of
DE-miRs. Combined with the HF/DE-mRNAs list,
we obtained 2 independent DE-miRs-HF/DE-mRNASs
networks, including upregulated DE-miRs/downregulated
DE-mRNAs and downregulated DE-miRs/upregulated
DE-mRNAs (Supplementary Figure 2). HIF-1A mRNA
has a targeted relationship with some downregulated
miRs, such as miR-101-3p and miR-194-3p. These miRs
can explain the increase in HIF-1A mRNA expression
in the high hypoxia score groups of the 10 cohorts.
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A GO-biology process KEGG-pathway Canonical pathway Reactome pathway
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A survival-related refined network was obtained by
combining the survival analysis results (Figure 3B). In
this refined DE-miR/DE-mRNA network, all nodes were
associated with the survival rate of HCC patients
(logrank P < 0.05), and a negative correlation between
nodes was indicated (r < -0.4 and P < 0.05). For
example, miR-194-5p showed low expression in the
high hypoxia score group, which was a protective factor
for the survival rate. Its potential target genes, SOX4,
HK2, MARCKS, and LHFPL2, showed high expression
in the high hypoxia score group and were risk factors for
the OS rate. The expression of miR-194-5p was
significantly negatively correlated with the mRNA
expression of SOX4, HK2, MARCKS, and LHFPL2.
The elements in the refined DE-miR/DE-mRNA
network should receive more attention. We performed
KEGG pathway enrichment analysis on all target genes
of DE-miRs. The enrichment results of the top 20
(according to the P-value) were shown in Figure 3C.
Some important classical pathways related to tumor
development, such as the Hippo pathway, TGF-beta
pathway, Ras signaling pathway, mTOR pathway, PI3K-
AKT pathway, Wnt pathway, and AMPK pathway, were
involved. This result further suggests that these DE-
miRs may have an unignorable role in HCC tissues with
high hypoxia scores. Besides, more than 80% (54/63) of
the DE-mIiRs had at least one target gene enriched in the
HIF-1 signaling pathway. This confirms that DE-miRs
identified by the 21-gene hypoxia signature is indeed
hypoxic-related.

Through the 21-gene signature, we revealed the presence
of long non-coding RNAs (IncRNASs) that respond to
and influence hypoxia exposure. In HCC tissues of
patients with high hypoxia scores and low hypoxia
scores, we found 719 differentially expressed INCRNAs
(DE-IncRNAS), including 499 upregulated DE-IncRNAs
and 220 downregulated DE-IncRNAs. The top-50
DE-IncRNAs (sorted by adjusted P) and survival
analysis results (logrank test, cut-off = median
expression level) are shown in Figure 3D. The complete
lists of DE-INcRNAs and survival analysis results can be
found in Additional File 1: Supplementary Tables 7, 8,
respectively. miR210HG exhibited the most significant
change (log.FC = 2.21) among the upregulated DE-
IncRNAs. Higher miR210HG suggested poorer survival
(HR = 1.82, logrank P < 0.05). Similarly, IncRNAs
AC124798 and AC061992 were also upregulated in the
high hypoxia score group and suggested poor prognosis.
In addition, IncRNAs LNC00671 and FAM99A were
downregulated in the high hypoxia score group, which
might be protective factors for prognosis. Based on
competing endogenous RNA (ceRNA) theory and
expression changes, we constructed a DE-IncRNA-DE-
microRNA-HF/DE-mRNA network (Figure 3E). The
relationship between each node and the survival rate for

HCC patients was identified, and a negative correlation
between nodes was also indicated. The miR-IncRNA
relationship in the network was supported by
experimental evidence (provided by DIANA-LncBase).
Taking IncRNA-SNHG12 as an example, it exhibits
high expression in the high hypoxia score group and is a
risk factor for the survival of HCC patients. INcRNA-
SNHG12 and miR-194-3p may have sequence
complementarity. miR-194-3p was low in the high
hypoxia score group and thus is a protective factor for
HCC patient survival. The target mMRNAs of miR-194-3p
were TMA4SF1 and HIF-1A. TM4SF1 and HIF-1A
showed high expression in the high hypoxia score group
and thus were risk factors for HCC patient survival.
TMA4SF1, HIF-1A, and SNHG12 showed a significantly
negative correlation with miR-194-3p. Therefore,
a hypoxia-responsive InNcCRNA-SNHG12/miR-194-3p/
TMA4SF1 or HIF-1A ceRNA network is likely to present
in the cancer tissues of HCC patients, and the ceRNA
network is involved in tumor development and is related
to patient prognosis. Leaving out sequence
complementarity, we constructed the co-expression
networks of all HF/DE-mRNAs, DE-miRs, and DE-
IncRNASs (|Pearson r| > 0.8 and P < 0.05), including a
positive co-network (Supplementary Figure 3A, Pearson
r > 0.8 for all nodes) and a negative co-expression
network (Supplementary Figure 3B, Pearson r < -0.8 for
all nodes); the hub genes in the 2 networks were
SERPINC1 and PKM, respectively. SERPINC1 was
significantly downregulated in the high hypoxia score
groups of 6 cohorts while PKM was significantly
upregulated in the high hypoxia score groups of 10
cohorts (Supplementary Figure 3C). Compared with
those in normal tissues, SERPINC1 was significantly
lower and PKM was significantly higher in HCC tissues
(Supplementary Figure 3D). Combined with the survival
analysis results (Supplementary Figure 3E), we
speculated that SERPINC1 and PKM play important
roles, namely, cancer-suppressing and cancer-promoting
functions, respectively, under hypoxia exposure.
Supplementary Figure 4 displays all mRNAs and
IncRNAs related to HIF-1A mRNA levels (|Pearson r|>
0.4 and P < 0.05), and the relationship between nodes
and survival was indicated. Among miRs, only
microRNA-194-3p and microRNA-194-5p had a
significantly negative correlation with HIF-1A. These
data may help to explain the differences in HIF-1A
MRNA between groups with high hypoxia scores and
reflect the core role of HIF-1A mRNA.

Genomic alterations in HCC patients with different
hypoxia scores

TCGA-LIHC data were used to reveal somatic copy
number aberrations (CNAs) and somatic single-
nucleotide variants (SNVs) in HCC patients with
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Figure 3. miRNA and long non-coding RNA (IncRNA) alterations in HCC patients with high hypoxia scores and low hypoxia
scores. (A) A total of 63 DE-miRNAs were significantly upregulated or downregulated in the high hypoxia score group. The forest plot
indicates the hazard ratios (HRs) of these miRNAs for overall survival (OS) in the survival analysis (logrank test). (B) Some DE-miRNAs and
HF/DE-mRNAs constitute a survival-related target interaction network. All nodes in the network are correlated with HCC patient survival in
median expression level). The correlations between the nodes were calculated using Pearson
correlation analysis. (C) Top 20 (sorted by P-value) KEGG pathway enrichment analysis results from 633 DE-miRNA target genes. (D) Top 50
(sorted by adjusted P-value) DE-IncRNAs that were significantly upregulated or downregulated in the high hypoxia score group. The forest
plot indicates the hazard ratios (HRs) of these IncRNAs for OS in the survival analysis (logrank test). (E) The refined DE-IncRNA-DE-miRNA—
HF/DE-mRNA ceRNA network. The correlations between nodes were calculated by Pearson correlation analysis. The survival data were from

TCGA-LIHC (logrank P < 0.05, cut-off =

TCGA-LIHC. The cut-off is the median expression level.

B

B Up-regulated in High hypoxia score/risk factor for OS

W Down-regulated in High hypoxia score/protective factor for OS

~—— Pearson r<-0.4 and P<0.05 in TCGA-LIHC

mir{§81-5p

NABL1
miR{So-5p-

LHEPL2
L.”m;.k’w mir§82-3p

oD
sLogsAa1s “"*m 5:3p MAgKs
& o

SLaBA7 mlR -c-ap z‘ "
SLG22A1

B g s@x4

CYR27A1

PON1
H»‘sz

oot AN

Nz m'RJ”n Axget—— ?‘
miR @io-5p

TMRRSS6

SORBS2

=
SLE3BA3 K.’
DBYs

Wht signaling pathway - L ]
Thyroid hormone signaling pathway- (=)
TGF-beta signaling pathway ]

Regulating pluripotency of stem cells (@]

Ras signaling pathway ®
Rap1 5|gnallng pathway .

Protein p o
PI3K-Akt signaling pathway
Pathways in cancer
Mucin type O-Glycan biosynthesis .
mTOR signaling pathway { ® [ ]

Morphine addiction ®

Hippo signaling pathway
HIF-1 signaling pathway [ ]
FoxO signaling pathway :
Estrogen signaling pathway
ErbB signaling pathway
Circadian entrainment {@®
Adherens junction [ ]

HEA

miR{B1-3p

miR{i84-5p e mR-§888-3p

Gene count
O 50

.. O 100

O 150
® O 200
O 250

4 5 6
-log10( P value)

B Up-regulated in High hypoxia score

mm Down-regulated in High hypoxia score
Risk factor for OS/Protective factor for OS

~—— Pearson r<-0.4 and P<0.05 in TCGA-LIHC

A X LINGROST1
a2 BehL

ACADSE.
N2 .
SLEWA4 4
A@r UNoduss gy ||'@R
sLagats «v.ut
P mR.‘lven F“

PIgDX
aags OO o

mirfli1-5p

PPRIR1A 2

unagpinT  HMBX1
i g NR2pAST
- po— sr.n.um
1L2€@As1 i | o “.’*
miifi-5  WoR@-As2 905 o
@i i : [ ee e
VACRAS me Py wi‘m
7 o

AB@AST

GED1  PCOLGE-AST

T#

ALI‘M

www.aging-us.com

6531

AGING



different hypoxia scores. First, from the overall
differences in gene-level CNAs in patients with high
hypoxia scores (greater than the upper quartile) and low
hypoxia scores (less than the lower quartile), we found
that CNAs of approximately 13.7% (3396/24769) of the
genes were concentrated in the high hypoxia score
group (Supplementary Figure 5A and Additional File 1:
Supplementary Table 9). CNA events in 71 cancer
genes (according to the definition of the Precision
Oncology Knowledge Base (OncoKB) cancer gene list)
were significantly differentially distributed between the
two groups (Figure 4A). The copy number gain to copy
number loss ratios for most genes were significantly
increased in the high hypoxia score group. The roles
and CNA tendencies (according to the proportions of
homozygous deletions, single copy deletions, low-level
copy number amplification, and high-level copy number
amplification) of these 71 cancer genes were provided.

For example, CDK4 is an oncogene, and its CNAs in
the high hypoxia score group are mostly copy number
gains. IRF1 is a tumor suppressor gene, and its CNAs in
the high hypoxia score group were mostly copy number
losses. The occurrence frequency of CNAs of some
cancer genes was high in patients in the TCGA-LIHC
cohort. Next, we analyzed the difference in gene-level
SNVs between the two groups of patients.
Unfortunately, we did not obtain much evidence that
indicated a strong connection between SNVs and
hypoxia score. Only 4 genes were significantly different
in the incidence of SNVs between the two groups
(Figure 4B). Among them, the proportion of non-silent
mutations only increased in ADAMTS19 in the high
hypoxia score group. Besides, we found that SNVs in
172 genes tended to be concentrated in the low hypoxia
score group or the high hypoxia score group
(Supplementary Figure 5B). However, because the
overall mutation frequency of these genes was not high,
there was no statistically significant difference in the
distribution of SNVs between the two groups.

Epigenetic alterations in HCC patients with different
hypoxia scores

We found that there were significant differences in the
methylation levels at 464 gene loci between patients
with high hypoxia scores and patients with low hypoxia
scores and that the methylation levels at most loci were
significantly reduced in the high hypoxia score group
(Supplementary Figure 5C and Additional File 1:
Supplementary Table 10). The methylation level
increased at only a few loci in the high hypoxia score
group. We jointly analyzed methylation levels and
mRNA expression levels and found a significant
increase in MRNA expression levels of 30 genes in the
high hypoxia score group (data from TCGA-LIHC) and

a simultaneous decrease in their methylation levels
(Figure 4C). T